返回

哥卷不动了,妹,请再努力一点

首页
关灯
护眼
字体:
第41章 陈默在画符(2/2)
   存书签 书架管理 返回目录
    只是那字,实在不敢恭维,放在医院里面,也绝对是主任级别的。

    紧接着,陈默开始咬笔头了。

    毕竟这时候,需要陈默动脑子的时候了。

    陈默的脑子也开始高速运转起来,经过半个小时的思考,思路也变得清晰起来。

    陈默也再次动笔,这次他要把整个证明过程的框架给列出来。

    【1.希函数是关于s=1/2对称的,即ζs=ζ1-s。】

    【2.希函数满足/ζs=ζ/s。】

    【3.存在无穷多非平凡零点。】

    【4.希函数在实数域不存在零点。】

    【5.设ζp=0,则ζ1-p=0,ζ/p=0,ζ1-/p=0。】

    框架列完了,陈默也开始思考,如何把框架里面的内容充实了。

    这才是最难,最重要的部分,而且也不是一朝一夕可以完成的。

    所以,陈默也不着急,喝了口水,才开始慢慢地思考。

    第一点,希函数是关于s=1/2对称的,即ζs=ζ1-s,这是黎曼先生在1859年提出黎曼猜想的时候,就已经给出了的。

    所以,这一点,是不需要陈默来证明的,他也直接略过了。

    第二点,希函数满足/ζs=ζ/s。

    这里就需要用到一种数学方法--解析开拓法,这是数学家施瓦兹先生提出的一种数学方法。

    它是一种能把解析函数定义域,作对称扩大的解析开拓的数学方法。

    这个解析开拓法,还有另外的一个名称,那就是黎曼-施瓦兹对称原理,亦称黎曼一施瓦兹反射原理。

    陈默希望借助这个黎曼-施瓦兹对称原理,解决希函数的对称性问题。

    带着这个思路,陈默也开始写写画画起来。

    若D与D*为z平面上的两个区域,它们关于实轴对称,D位于上半平面,它们的边界都包含实轴上一线段s。

    {D,fz}是一个解析元素,fz在D∪S上连续且在S上取实数值,则存在一个函数Fz。

    那就需要满足以下3点:

    1.在区域D∪S∪D*内解析;

    2.在D内有Fz=fz;

    3.在D*内有;

    只要满足以上3点,则可以称是{D,fz}的越过S的直接解析开拓。

    把这些列出来之后,陈默的思路也越来清晰了,也再次开始写写画画起来。

    他需要把这个完整地证明出来,否则,以后容易被人挑刺。

    陈默可不想到时搞出一个漏洞百出的东西出来,如果这样,那他不如不干。

    不知不觉间,陈默就已经沉浸在其中。

    一旁的刘洲,是第一个发现陈默这样的,也忍不住偷偷瞄了一眼陈默在写什么。

    只是,只看了一眼,刘洲就开始怀疑人生了。

    那是啥?

    鬼画符吗?

    难道陈默还兼职当道士?

    在刘洲眼里,陈默现在写的东西,跟那些10块钱八张的黄纸没什么区别。

    刘洲心中也开始忍不住活络了起来。

    不行,一定要让陈默带上自己。

    这么好玩的东西,自己怎么可以错过?

    不答应,这兄弟就当到头了。
上一页 目录 下一章