µÚ¶þÊ®ÎåÕ º«¡¤Êýѧ¹í²Å¡¤Á¢£¨Çó×·¶Á°¡°¡°¡°¡°¡°¡£¡£¡£¡£¡£¡£©(1/2)
ÎÝ×ÓÀÐìÔÆÕýÔÚ٩٩¶øÌ¸£º
¡°°¬Èø¿ËÏÈÉú£¬º«Á¢¾ôÊ¿¼ÆËã·¢ÏÖ£¬¶þÏîʽ¶¨ÀíÖÐÖ¸ÊýΪ·ÖÊýʱ£¬¿ÉÒÔÓÃe^x = 1+x+x^2/2!+x^3/3!+¡¡+x^n/n!+¡¡À´¼ÆËã¡£¡±
˵×ÅÐìÔÆÄÃÆð±Ê£¬ÔÚÖ½ÉÏдÏÂÁËÒ»ÐÐ×Ö£º
µ±n=0ʱ£¬e^x£¾1¡£
¡°°¬Èø¿ËÏÈÉú£¬ÕâÀïÊÇ´Óx^0¿ªÊ¼µÄ£¬ÓÃ0×÷ΪÆðµãÌÖÂ۱ȽϷ½±ã£¬Äú¿ÉÒÔÀí½â°É£¿¡±
СţµãÁ˵ãÍ·£¬Ê¾Òâ×Ô¼ºÃ÷°×¡£
ËæºóÐìÔÆ¼ÌÐøÐ´µÀ£º
¼ÙÉèµ±n=kʱ½áÂÛ³ÉÁ¢£¬¼´e^x£¾1+x/1!+x^2/2!+x^3/3!+¡¡+x^k/k!£¨x£¾0£©
Ôòe^x-[1+x/1!+x^2/2!+x^3/3!+¡¡+x^k/k!]£¾0
ÄÇôµ±n=k+1ʱ£¬ÁÊýf(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+¡¡+x^(k+1)/(k+1)]!£¨x£¾0£©
½Ó×ÅÐìÔÆÔÚf(k+1)ÉÏ»Á˸öȦ£¬ÎʵÀ£º
¡°°¬Èø¿ËÏÈÉú£¬Äú¶Ôµ¼ÊýÓÐÁ˽âô£¿¡±
Сţ¼ÌÐøµãÁ˵ãÍ·£¬ÑÔ¼òÒâêàµÄ±Ä³öÁ½¸ö×Ö£º
¡°Á˽⡣¡±
ѧ¹ýÊýѧµÄÅóÓÑÓ¦¸Ã¶¼ÖªµÀ¡£
µ¼ÊýºÍ»ý·ÖÊÇ΢»ý·Ö×îÖØÒªµÄ×é³É²¿·Ö£¬¶øµ¼ÊýÓÖÊÇ΢·Ö»ý·ÖµÄ»ù´¡¡£
ÑÛÏÂÒѾʱֵ1665ÄêÄ©£¬Ð¡Å£¶ÔÓÚµ¼ÊýµÄÈÏÖªÆäʵÒѾµ½ÁËÒ»¸ö±È½ÏÉî°ÂµÄµØ²½ÁË¡£
ÔÚÇóµ¼·½Ã棬СţµÄ½éÈëµãÊÇ˲ʱËÙ¶È¡£
ËÙ¶È=·³Ìxʱ¼ä£¬ÕâÊÇСѧÉú¶¼ÖªµÀµÄ¹«Ê½£¬µ«Ë²Ê±ËÙ¶ÈÔõô°ì?
±ÈÈç˵֪µÀ·³Ìs=t^2£¬ÄÇôt=2µÄʱºò£¬Ë²Ê±ËÙ¶ÈvÊǶàÉÙÄØ?
Êýѧ¼ÒµÄ˼ά£¬¾ÍÊǽ«Ã»Ñ§¹ýµÄÎÊÌâת»¯³Éѧ¹ýµÄÎÊÌâ¡£
ÓÚÊÇÅ£¶ÙÏëÁËÒ»¸öºÜ´ÏÃ÷µÄ°ì·¨£º
ȡһ¸ö¡±ºÜ¶Ì¡±µÄʱ¼ä¶Î¡÷t £¬ÏÈËãËãt= 2µ½t=2+¡÷t Õâ¸öʱ¼ä¶ÎÄÚ£¬Æ½¾ùËÙ¶ÈÊǶàÉÙ¡£
v=s/t=£¨4¡÷t+¡÷t^2£©/¡÷t=4+¡÷t¡£
µ±¡÷t Ô½À´Ô½Ð¡£¬2+¡÷t¾ÍÔ½À´Ô½½Ó½ü2 £¬Ê±¼ä¶Î¾ÍÔ½À´Ô½Õ¡£
¡÷t Ô½À´Ô½½Ó½ü0ʱ£¬ÄÇôƽ¾ùËٶȾÍÔ½À´Ô½½Ó½ü˲ʱËÙ¶È¡£
Èç¹û¡÷tСµ½ÁË0 £¬Æ½¾ùËÙ¶È4+¡÷t¾Í±ä³ÉÁË˲ʱËÙ¶È4¡£
µ±È»ÁË¡£
ºóÀ´±´¿ËÀ³·¢ÏÖÁËÕâ¸ö·½·¨µÄһЩÂß¼ÎÊÌ⣬Ҳ¾ÍÊÇ¡÷tµ½µ×ÊDz»ÊÇ0¡£
Èç¹ûÊÇ0£¬ÄÇô¼ÆËãËٶȵÄʱºòÔõôÄÜÓá÷t×ö·ÖďĨ£¿ÏÊΪÈË...¿È¿È£¬Ð¡Ñ§ÉúÒ²ÖªµÀ0²»ÄÜ×ö³ýÊý¡£
µ½Èç¹û²»ÊÇ0£¬4+¡÷t¾ÍÓÀÔ¶±ä²»³É4£¬Æ½¾ùËÙ¶ÈÓÀÔ¶±ä²»³É˲ʱËÙ¶È¡£
°´ÕÕÏÖ´ú΢»ý·ÖµÄ¹ÛÄ±´¿ËÀ³ÊÇÔÚÖÊÒÉlim¡÷t¡ú0ÊÇ·ñµÈ¼ÛÓÚ¡÷t=0¡£
Õâ¸öÎÊÌâµÄ±¾ÖÊʵ¼ÊÉÏÊÇÔÚ¶Ô³õÉú΢»ý·ÖµÄÒ»ÖÖ¿½ÎÊ£¬Óá°ÎÞÏÞϸ·Ö¡±ÕâÖÖÔ˶¯¡¢Ä£ºýµÄ´ÊÓïÀ´¶¨Ò徫׼µÄÊýѧ£¬ÕæµÄºÏÊÊÂð£¿
±´¿ËÀ³ÓÉ´ËÒý·¢µÄһϵÁÐÌÖÂÛ£¬±ãÊǺպÕÓÐÃûµÄµÚ¶þ´ÎÊýѧΣ»ú¡£
ÉõÖÁÓÐЩ±¯¹Ûµ³Ðû³ÆÊýÀí´óÏÃҪ̮ËúÁË£¬ÎÒÃǵÄÊÀ½ç¶¼ÊÇÐé¼ÙµÄ¡ª¡ªÈ»ºóÕâЩ»õÕæµÄ¾ÍÌøÂ¥ÁË£¬ÔڰµØÀû»¹ÁôÓÐËûÃǵÄÒÅÏñ£¬Ò²²»ÖªµÀÊÇÓÃÀ´±»ÈËÕ°Ñö»¹ÊDZÞʬµÄ¡£
Õâ¼þÊÂÒ»Ö±µ½Òª¿ÂÎ÷ºÍκ¶ûË¹ÌØÀ˹Á½È˵ijöÏÖ£¬²Å»á³¹µ×ÓÐÁ˽âÊÍÓ붨ÂÛ£¬²¢ÇÒÕæÕý¶¨ÒåÁ˺óÊÀºÜ¶àͬѧ¹ÒµÄÄÇ¿ÃÊ÷¡£
µ«ÄÇÊǺóÀ´µÄÊÂÇ飬ÔÚСţµÄÕâ¸öÄê´ú£¬ÐÂÉúÊýѧµÄʵÓÃÐÔÊÇ·ÅÔÚÊ×λµÄ£¬Òò´ËÑϸñ»¯¾ÍÏà¶Ô±»ºöÂÔÁË¡£
Õâ¸öʱ´úµÄºÜ¶àÈ˶¼ÊÇÒ»±ßÀûÓÃÊýѧ¹¤¾ß×öÑо¿£¬Ò»±ßÓõóöÀ´µÄ½á¹û¶Ô¹¤¾ß½øÐиÄÁ¼ÓÅ»¯¡£
ż¶û»¹»á³öÏÖһЩµ¹Ã¹µ°Ëã×ÅËã×Å£¬ºöÈ»·¢ÏÖ×Ô¼ºÕâ±²×ÓµÄÑо¿Æäʵ´íÁ˵ÄÇé¿ö¡£
×ܶøÑÔÖ®¡£
ÔÚÈç½ñÕâ¸öʱ¼äµã£¬Ð¡Å£¶ÔÓÚÇóµ¼»¹ÊDZȽÏÊìϤµÄ£¬Ö»²»¹ý»¹Ã»ÓйéÄɳöϵͳµÄÀíÂÛ¶øÒÑ¡£
ÐìÔÆ¼û×´ÓÖдµ½£º
¶Ôf(k+1)Çóµ¼£¬¿ÉµÃf(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+¡¡+x^k/k!
ÓɼÙÉèÖªf(k+1)'£¾0
ÄÇôµ±x=0ʱ¡£
f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0
ËùÒÔµ±x£¾0ʱ¡£
ÒòΪµ¼Êý´óÓÚ0£¬ËùÒÔf(x)£¾f(0)=0
ËùÒÔµ±n=k+1ʱf(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+¡¡+x^(k+1)/(k+1)]!£¨x£¾0£©³ÉÁ¢£¡
×îºóÐìÔÆÐ´µ½£º
µÚ¶þÊ®ÎåÕ º«¡¤Êýѧ¹í²Å¡¤Á¢£¨Çó×·¶Á°¡°¡°¡°¡°¡°¡£¡£¡£¡£¡£¡£©(1/2),µã»÷ÏÂÒ»Ò³¼ÌÐøÔĶÁ