·µ»Ø

×ß½ø²»¿ÆÑ§

Ê×Ò³
¹ØµÆ
»¤ÑÛ
×ÖÌ壺
´ó
ÖÐ
С
µÚ¶þÊ®ÎåÕ º«¡¤Êýѧ¹í²Å¡¤Á¢£¨Çó×·¶Á°¡°¡°¡°¡°¡°¡£¡£¡£¡£¡£¡£©(1/2)
   ´æÊéÇ© Êé¼Ü¹ÜÀí ·µ»ØÄ¿Â¼
    ÎÝ×ÓÀÐìÔÆÕýÔÚ٩٩¶øÌ¸£º

    ¡°°¬Èø¿ËÏÈÉú£¬º«Á¢¾ôÊ¿¼ÆËã·¢ÏÖ£¬¶þÏîʽ¶¨ÀíÖÐÖ¸ÊýΪ·ÖÊýʱ£¬¿ÉÒÔÓÃe^x = 1+x+x^2/2!+x^3/3!+¡­¡­+x^n/n!+¡­¡­À´¼ÆËã¡£¡±

    Ëµ×ÅÐìÔÆÄÃÆð±Ê£¬ÔÚÖ½ÉÏдÏÂÁËÒ»ÐÐ×Ö£º

    µ±n=0ʱ£¬e^x£¾1¡£

    ¡°°¬Èø¿ËÏÈÉú£¬ÕâÀïÊÇ´Óx^0¿ªÊ¼µÄ£¬ÓÃ0×÷ΪÆðµãÌÖÂ۱ȽϷ½±ã£¬Äú¿ÉÒÔÀí½â°É£¿¡±

    Ð¡Å£µãÁ˵ãÍ·£¬Ê¾Òâ×Ô¼ºÃ÷°×¡£

    ËæºóÐìÔÆ¼ÌÐøÐ´µÀ£º

    ¼ÙÉèµ±n=kʱ½áÂÛ³ÉÁ¢£¬¼´e^x£¾1+x/1!+x^2/2!+x^3/3!+¡­¡­+x^k/k!£¨x£¾0£©

    Ôòe^x-[1+x/1!+x^2/2!+x^3/3!+¡­¡­+x^k/k!]£¾0

    ÄÇôµ±n=k+1ʱ£¬ÁÊýf(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+¡­¡­+x^(k+1)/(k+1)]!£¨x£¾0£©

    ½Ó×ÅÐìÔÆÔÚf(k+1)ÉÏ»­Á˸öȦ£¬ÎʵÀ£º

    ¡°°¬Èø¿ËÏÈÉú£¬Äú¶Ôµ¼ÊýÓÐÁ˽âô£¿¡±

    Ð¡Å£¼ÌÐøµãÁ˵ãÍ·£¬ÑÔ¼òÒâêàµÄ±Ä³öÁ½¸ö×Ö£º

    ¡°Á˽⡣¡±

    Ñ§¹ýÊýѧµÄÅóÓÑÓ¦¸Ã¶¼ÖªµÀ¡£

    µ¼ÊýºÍ»ý·ÖÊÇ΢»ý·Ö×îÖØÒªµÄ×é³É²¿·Ö£¬¶øµ¼ÊýÓÖÊÇ΢·Ö»ý·ÖµÄ»ù´¡¡£

    ÑÛÏÂÒѾ­Ê±Öµ1665ÄêÄ©£¬Ð¡Å£¶ÔÓÚµ¼ÊýµÄÈÏÖªÆäʵÒѾ­µ½ÁËÒ»¸ö±È½ÏÉî°ÂµÄµØ²½ÁË¡£

    ÔÚÇóµ¼·½Ã棬СţµÄ½éÈëµãÊÇ˲ʱËÙ¶È¡£

    ËÙ¶È=·³Ìxʱ¼ä£¬ÕâÊÇСѧÉú¶¼ÖªµÀµÄ¹«Ê½£¬µ«Ë²Ê±ËÙ¶ÈÔõô°ì?

    ±ÈÈç˵֪µÀ·³Ìs=t^2£¬ÄÇôt=2µÄʱºò£¬Ë²Ê±ËÙ¶ÈvÊǶàÉÙÄØ?

    Êýѧ¼ÒµÄ˼ά£¬¾ÍÊǽ«Ã»Ñ§¹ýµÄÎÊÌâת»¯³Éѧ¹ýµÄÎÊÌâ¡£

    ÓÚÊÇÅ£¶ÙÏëÁËÒ»¸öºÜ´ÏÃ÷µÄ°ì·¨£º

    È¡Ò»¸ö¡±ºÜ¶Ì¡±µÄʱ¼ä¶Î¡÷t £¬ÏÈËãËãt= 2µ½t=2+¡÷t Õâ¸öʱ¼ä¶ÎÄÚ£¬Æ½¾ùËÙ¶ÈÊǶàÉÙ¡£

    v=s/t=£¨4¡÷t+¡÷t^2£©/¡÷t=4+¡÷t¡£

    µ±¡÷t Ô½À´Ô½Ð¡£¬2+¡÷t¾ÍÔ½À´Ô½½Ó½ü2 £¬Ê±¼ä¶Î¾ÍÔ½À´Ô½Õ­¡£

    ¡÷t Ô½À´Ô½½Ó½ü0ʱ£¬ÄÇôƽ¾ùËٶȾÍÔ½À´Ô½½Ó½ü˲ʱËÙ¶È¡£

    Èç¹û¡÷tСµ½ÁË0 £¬Æ½¾ùËÙ¶È4+¡÷t¾Í±ä³ÉÁË˲ʱËÙ¶È4¡£

    µ±È»ÁË¡£

    ºóÀ´±´¿ËÀ³·¢ÏÖÁËÕâ¸ö·½·¨µÄһЩÂß¼­ÎÊÌ⣬Ҳ¾ÍÊÇ¡÷tµ½µ×ÊDz»ÊÇ0¡£

    Èç¹ûÊÇ0£¬ÄÇô¼ÆËãËٶȵÄʱºòÔõôÄÜÓá÷t×ö·ÖďĨ£¿ÏÊΪÈË...¿È¿È£¬Ð¡Ñ§ÉúÒ²ÖªµÀ0²»ÄÜ×ö³ýÊý¡£

    µ½Èç¹û²»ÊÇ0£¬4+¡÷t¾ÍÓÀÔ¶±ä²»³É4£¬Æ½¾ùËÙ¶ÈÓÀÔ¶±ä²»³É˲ʱËÙ¶È¡£

    °´ÕÕÏÖ´ú΢»ý·ÖµÄ¹ÛÄ±´¿ËÀ³ÊÇÔÚÖÊÒÉlim¡÷t¡ú0ÊÇ·ñµÈ¼ÛÓÚ¡÷t=0¡£

    Õâ¸öÎÊÌâµÄ±¾ÖÊʵ¼ÊÉÏÊÇÔÚ¶Ô³õÉú΢»ý·ÖµÄÒ»ÖÖ¿½ÎÊ£¬Óá°ÎÞÏÞϸ·Ö¡±ÕâÖÖÔ˶¯¡¢Ä£ºýµÄ´ÊÓïÀ´¶¨Ò徫׼µÄÊýѧ£¬ÕæµÄºÏÊÊÂð£¿

    ±´¿ËÀ³ÓÉ´ËÒý·¢µÄһϵÁÐÌÖÂÛ£¬±ãÊǺպÕÓÐÃûµÄµÚ¶þ´ÎÊýѧΣ»ú¡£

    ÉõÖÁÓÐЩ±¯¹Ûµ³Ðû³ÆÊýÀí´óÏÃҪ̮ËúÁË£¬ÎÒÃǵÄÊÀ½ç¶¼ÊÇÐé¼ÙµÄ¡ª¡ªÈ»ºóÕâЩ»õÕæµÄ¾ÍÌøÂ¥ÁË£¬ÔڰµØÀû»¹ÁôÓÐËûÃǵÄÒÅÏñ£¬Ò²²»ÖªµÀÊÇÓÃÀ´±»ÈËÕ°Ñö»¹ÊDZÞʬµÄ¡£

    Õâ¼þÊÂÒ»Ö±µ½Òª¿ÂÎ÷ºÍκ¶ûË¹ÌØÀ­Ë¹Á½È˵ijöÏÖ£¬²Å»á³¹µ×ÓÐÁ˽âÊÍÓ붨ÂÛ£¬²¢ÇÒÕæÕý¶¨ÒåÁ˺óÊÀºÜ¶àͬѧ¹ÒµÄÄÇ¿ÃÊ÷¡£

    µ«ÄÇÊǺóÀ´µÄÊÂÇ飬ÔÚСţµÄÕâ¸öÄê´ú£¬ÐÂÉúÊýѧµÄʵÓÃÐÔÊÇ·ÅÔÚÊ×λµÄ£¬Òò´ËÑϸñ»¯¾ÍÏà¶Ô±»ºöÂÔÁË¡£

    Õâ¸öʱ´úµÄºÜ¶àÈ˶¼ÊÇÒ»±ßÀûÓÃÊýѧ¹¤¾ß×öÑо¿£¬Ò»±ßÓõóöÀ´µÄ½á¹û¶Ô¹¤¾ß½øÐиÄÁ¼ÓÅ»¯¡£

    Å¼¶û»¹»á³öÏÖһЩµ¹Ã¹µ°Ëã×ÅËã×Å£¬ºöÈ»·¢ÏÖ×Ô¼ºÕâ±²×ÓµÄÑо¿Æäʵ´íÁ˵ÄÇé¿ö¡£

    ×ܶøÑÔÖ®¡£

    ÔÚÈç½ñÕâ¸öʱ¼äµã£¬Ð¡Å£¶ÔÓÚÇóµ¼»¹ÊDZȽÏÊìϤµÄ£¬Ö»²»¹ý»¹Ã»ÓйéÄɳöϵͳµÄÀíÂÛ¶øÒÑ¡£

    ÐìÔÆ¼û×´ÓÖдµ½£º

    ¶Ôf(k+1)Çóµ¼£¬¿ÉµÃf(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+¡­¡­+x^k/k!

    ÓɼÙÉèÖªf(k+1)'£¾0

    ÄÇôµ±x=0ʱ¡£

    f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0

    ËùÒÔµ±x£¾0ʱ¡£

    ÒòΪµ¼Êý´óÓÚ0£¬ËùÒÔf(x)£¾f(0)=0

    ËùÒÔµ±n=k+1ʱf(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+¡­¡­+x^(k+1)/(k+1)]!£¨x£¾0£©³ÉÁ¢£¡

    ×îºóÐìÔÆÐ´µ½£º
µÚ¶þÊ®ÎåÕ º«¡¤Êýѧ¹í²Å¡¤Á¢£¨Çó×·¶Á°¡°¡°¡°¡°¡°¡£¡£¡£¡£¡£¡£©(1/2),µã»÷ÏÂÒ»Ò³¼ÌÐøÔĶÁ
ÉÏÒ»Õ Ŀ¼ ÏÂÒ»Ò³